Pharmacological Inhibition of TPL2/MAP3K8 Blocks Human Cytotoxic T Lymphocyte Effector Functions

نویسندگان

  • Fatema Z. Chowdhury
  • Leonardo D. Estrada
  • Sean Murray
  • James Forman
  • J. David Farrar
چکیده

CD8+ cytotoxic T lymphocytes (CTLs) play a major role in defense against intracellular pathogens. During development, antigen-presenting cells secrete innate cytokines such as IL-12 and IFN-α, which drive CTL differentiation into diverse populations of effector and long-lived memory cells. Using whole transcriptome analyses, the serine/threonine protein kinase Tpl2/MAP3K8 was found to be induced by IL-12 and selectively expressed by effector memory (TEM) CTLs. Tpl2 regulates various inflammatory pathways by activating the ERK mediated MAP kinase pathway in innate immune cells such as macrophages and dendritic cells. In this study, we found that a specific small molecule Tpl2 inhibitor blocked IFN-γ and TNF-α secretion as well as cytolytic activity of human CTLs. This pathway was specific for human effector CTLs, as the Tpl2 inhibitor did not block IFN-γ and TNF-α secretion from murine effector CTLs. Further, IL-12 failed to induce expression of Tpl2 in murine CTLs, and Tpl2 deficient murine CTLs did not exhibit any functional deficiency either in vitro or in vivo in response to L. monocytogenes infection. In summary, we identified a species-specific role for Tpl2 in effector function of human CTLs, which plays a major role in adaptive immune responses to intracellular pathogens and tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tpl2 kinase regulates T cell interferon-γ production and host resistance to Toxoplasma gondii

Tpl2 (Tumor progression locus 2), also known as Cot/MAP3K8, is a hematopoietically expressed serine-threonine kinase. Tpl2 is known to have critical functions in innate immunity in regulating tumor necrosis factor-alpha, Toll-like receptor, and G protein-coupled receptor signaling; however, our understanding of its physiological role in T cells is limited. We investigated the potential roles of...

متن کامل

Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity and May Mediate Interleukin-1β and Tumor Necrosis Factor-α Effects on Extracellular Signal–Regulated Kinase Activation and Lipolysis

OBJECTIVE Activation of extracellular signal-regulated kinase-(ERK)-1/2 by cytokines in adipocytes is involved in the alterations of adipose tissue functions participating in insulin resistance. This study aims at identifying proteins regulating ERK1/2 activity, specifically in response to inflammatory cytokines, to provide new insights into mechanisms leading to abnormal adipose tissue functio...

متن کامل

TPL2 mediates IL-17R signaling in neuroinflammation

TPL2 (tumor progression locus 2), also known as COT and MAP3K8, was initially identified as an oncogene and is now known to play important roles in the regulation of both tumor growth and inflammation [1]. In unstimulated cells, TPL2 associates with the NF-κB1 precursor protein p105 and the ubiquitin-binding protein ABIN-2 (A20-binding inhibitor of NF-κB 2) to form a complex that serves to main...

متن کامل

TPL2 kinase regulates the inflammatory milieu of the myeloma niche.

Targeted modulation of microenvironmental regulatory pathways may be essential to control myeloma and other genetically/clonally heterogeneous cancers. Here we report that human myeloma-associated monocytes/macrophages (MAM), but not myeloma plasma cells, constitute the predominant source of interleukin-1β (IL-1β), IL-10, and tumor necrosis factor-α at diagnosis, whereas IL-6 originates from st...

متن کامل

Tpl2 ablation promotes intestinal inflammation and tumorigenesis in Apcmin mice by inhibiting IL-10 secretion and regulatory T-cell generation.

To address the role of Tpl2, a MAP3K8 that regulates innate/adaptive immunity and inflammation, in intestinal tumorigenesis, we crossed a Tpl2 KO allele into the Apc(min/+) genetic background. Here, we show that Apc(min/+)/Tpl2(-/-) mice exhibit a fivefold increase in the number of intestinal adenomas. Bone marrow transplantation experiments revealed that the enhancement of polyposis was partia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014